
The DARPA SocialSim Challenge: Massive Multi-Agent
Simulations of the Github Ecosystem

Extended Abstract

James Blythe, Emilio Ferrara, Di Huang, Kristina Lerman, Goran Muric, Anna Sapienza,

Alexey Tregubov, Diogo Pacheco, John Bollenbacher, Alessandro Flammini, Pik-Mai Hui,

Filippo Menczer

{blythe,ferrarae,dihuang,lerman,gmuric,annas,tregubov}@isi.edu; {pacheco,jmbollen,aflammin,huip,fil}@iu.edu

USC Information Sciences Institute, Marina del Rey, CA (USA); Indiana University, Bloomington, IN (USA)

ABSTRACT
We model the evolution of GitHub, a large collaborative software-

development ecosystem, using massive multi-agent simulations as

a part of DARPA’s SocialSim program. Our best performing models

and our agent-based simulation framework are described here. Six

different agent models were tested based on a variety of machine

learning and statistical methods. The most successful models are

based on sampling from a stationary probability distribution of

actions and repositories for each agent.

ACM Reference Format: J. Blythe, E. Ferrara, D. Huang, K. Lerman, G. Muric, A.

Sapienza, A. Tregubov, D. Pacheco, J. Bollenbacher, A. Flammini, P.-M. Hui, F. Menczer.

2019. The DARPA SocialSim Challenge: Massive Multi-Agent Simulations of the Github

Ecosystem. In Proc. of the 18th Int’l Conf. on Autonomous Agents and Multiagent Systems

(AAMAS’19), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
The DARPA SocialSim challenge problem measured participant’s

ability, given 30 months of meta-data on user activity on GitHub,

to predict the next months’ activity as measured by a broad range

of metrics applied to ground truth, using agent-based simulation.

The challenge involved making predictions about roughly 3 million

individuals performing a combined 30 million actions on 6 million

repositories. We describe the agent framework and the models we

employed. Our team used a variety of learning methods contribut-

ing to six different types of agents that were tested against a wide

range of metrics. The broadly most successful method of those tried

sampled from a stationary probability distribution of actions and

target repositories for each agent.

First, we describe the agent-based simulator we developed to

carry out massive-scale simulations of techno-social systems. Sec-

ond, we present the inference methods that we employed to imple-

ment different agent-based models, based on statistical modeling

of historical activity, graph embedding to infer future interactions,

Bayesian models to capture activity processes, and methods to pre-

dict the emergence of new users and repositories that did not exist

in the historical data. These are novel applications of existing ana-

lytical tools to derive agent models from available data. Third, we

provide a rigorous evaluation of the performance of six different

models, as measured by a wide range of metrics. We also describe

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

the DARPA SocialSim GitHub Challenge, provide a characterization

of its rules, and describe how our team tackled it.

Our platform and models are general in scope, and have also

been applied to large-scale agent simulations of behavior on the

Twitter and Reddit social media platforms.

2 CHALLENGE PROBLEM DESCRIPTION
The DARPA SocialSim Challenge aims to simulate specific types of

interactions between users and repositories on GitHub. In detail, it

focuses on the simulation of social structure and temporal dynamics

of the system, as well as looking at individual, community and pop-

ulation behaviors. We model ten event types a user can perform on

a given repository: Create, Delete, Push, Pull, Issue, Issue-Comment,
Pull-Request, Commit-Comment, Watch, and Fork.

The training set are all events of public users and repositories in

the period spanning from 8/1/17 to 8/31/17, and 1/17/18 to 1/31/18,

as well as metadata such as repository languages, user types etc.

This includes a total of about 2.0M users and 3.3M repositories. For

the challenge, we simulate the events, users, and repositories of

GitHub from 2/1/18 to 2/28/18. As the training set included a gap

of 4.5 months, additional information about the state of the system

was provided, including all the profiles from users and repositories

that were created during the gap.

3 AGENT FRAMEWORK AND DOMAIN
IMPLEMENTATION

To implement our agent models we used FARM—an agent-based

simulation framework implemented in Python that supports large-

scale distributed simulations [5]. FARM also keeps track of the

repeated and systematic experimentation required to validate the

results from multi-agent simulations. FARM supports agents devel-

oped with the DASH framework [3], although it may be used with

any agent through an API.

In our experiments, DASH agents represent GitHub users and

implement GitHub events. Agents in FARM can communicate either

directly or by taking actions that are sent to a shared state object,

called a hub, that can be observed by other agents. In the GitHub

simulation model, every action taken by a user acts on a repository,

so communication is modeled indirectly by sending actions to a

hub that maintains the state of a set of repositories and provides

information to agents about their repositories of interest.

To support scaling to millions of agents and repositories FARM

provides a multi-process infrastructure to divide agents and state

across multiple hosts [5]. One hub is present on each image and

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1835

Repository popularity User popularity Community contributing users
0.0

0.2

0.4

0.6

0.8

1.0
Null model

Bayesian model

Link prediction via embedding

Preferential attachment

Baseline model

Ground-event model
Repository contributors

10.08

12.26

10.11

15.41 16.11

13.9

Repository event count issues

0.03 0.05

0.58

0.74 0.74 0.75
Null model

Bayesian model

Link prediction via embedding

Preferential attachment

Baseline model

Ground-event model

Repository contributors

10.08

12.26

10.11

15.41 16.11

13.9

Repository event count issues

0.03 0.05

0.58

0.74 0.74 0.75
Null model

Bayesian model

Link prediction via embedding

Preferential attachment

Baseline model

Ground-event model

Figure 1: Left: Popularity metrics, RBO , and community contributing users, higher is better. Center: Repository contributors, RMSE , lower
is better. Right: event issue count, R2, higher is better.

shared state is managed with Apache ZooKeeper [1]. Using a multi-

level graph partitioning algorithm to minimize the amount of com-

munication across partitions, simulation timewas reduced by 67% [5].

4 AGENT MODELS
Stationary probabilistic models. In the stationary probabilistic

models, each agent’s actions are determined by a stationary proba-

bility distribution built from the past history of events the agent has

initiated. The overall event rate and the probability of each action

are computed individually for each agent. We implemented three

variations of probabilistic simulation models: the baseline model
selects an event type and independently selects the repository on

which the selected action is to be applied; the ground-event model
selects an event type and repository simultaneously; the preferential
attachment model extends the baseline model by redefining agent

behaviour for watch and fork events. In all models, the frequency

of agents’ actions is determined by the event rate observed in the

past for each user.

Link prediction through embedding. Here we formulate the

problem of predicting user-repository interaction as a link predic-

tion task, by describing our system as a bipartite network in which

each node is either a user or a repository and links in each network

are specific events. We generate a bipartite network for each event

type with the exception of Create and Delete events. We then rep-

resent each of the built networks as a weighted adjacency matrix

Ae ∈ R |U |× |R |
, where e is an event type. Given the matrix Ae for

each event type e , we compare embedding methods [8] against a

random baseline: Graph Factorization (GF), Laplacian Eigenmaps

(LE), and Hybrid Orthogonal Projection and Estimation (HOPE). We

test performance using the MeanAveragePrecision (MAP), which

estimates amodel precision for each node and computes the average

over all nodes. All the methods outperform our random baseline,

which predicts links in a random fashion. In the experiments below

we used GF, which combined good performance with scalability.

Bayesian model. The GitHub Challenge can be seen as finding

relationships between the three governing entities: users, reposito-

ries, and events. We empirically measured the probabilities of these

relationships to adjust the posterior probabilities of a generative

model. In general terms, the model first chooses whether to create

a new user or to select an existing one. Then, it decides between a

category of events. Finally, it selects a repository and an action to

perform. We investigated the trade-off between recency and history

as driving forces to popularity [2]. The results showed that less is
more in terms of the amount of data needed to predict users’ activity

level. The user selection implements a rank model [7] based on

user’s activity level, with past activity being less weighted using a

30-day half-life decay.

Modeling new users and repositories. We build a parsimo-

nious model, able to predict the frequency of a particular event

type e performed by user u on a repository r , conditioned by non-

existing history of interaction betweenu and r . We compiled a total

list of 124 features extracted for a sample of user-repository pairs

and then we employ the Structured Sum of Squares Decomposition

(S3D) algorithm [6] to rank the features by their importance. The

ranks of features differ among the models. Still, the most informa-

tive features for predicting the actions of a user to a repository, are

derived from their mutual relation. However, many actions depend

on the information of the repository ownership.

5 CANDIDATE AGENTS AND RESULTS
We developed GitHub user agents that implemented the following

models described in the previous section: (1) the null model, (2)

the probabilistic baseline model, (3) the probabilistic ground-event

model, (4) the preferential attachment model, (5) link prediction via

embedding (LPE), and (6) the Bayesian model. The null model is

just a shift of the past data to the future.

To answer various research questions of the DARPA SocialSim

Challenge more than a dozen metrics were used to evaluate our

simulation results. Figure 1 on the left shows evaluation results for

two bounded metrics: repository popularity, user popularity. All

metrics are scaled to the [0,1] interval, higher is better. In the center,

Figure 1 shows repository contributors - the number of daily unique

contributors to a repository as a function of time. It is calculated

as RMSE, lower is better. On the right, it also shows repository

event count issues - the number of issue events by repository. It is

calculated as R2, higher is better. Other metrics are discussed in [4].

We demonstrated novel agents built using six different learning

principles to predict the future behavior of GitHub based on training

data. Across a broad array of prediction metrics, no single approach

dominated the others. One interesting constant was that, since

overall behavior is constantly changing, it was detrimental to use

all available training data in building the agents. Instead, one month

of data proved optimal across most of the agents, although this

precise number is no doubt dependent on the social network.

The main contribution of this work is to develop a framework

for massive-scale simulations in which agents embodying very

different ideas about decision making and data use can be directly

compared. Our approach is general, and has recently been applied

to the Reddit and Twitter social networks. Among other directions,

we are considering ways to combine these agent models, both intra-

agent, combining some of the best features of different approaches

in a single agent, and inter-agent, with simulations of more than

one type of agent, based on their predicted role.

Acknowledgements. Work supported by DARPA (W911NF-17-C-0094).

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1836

REFERENCES
[1] Apache. 2018. Apache ZooKeeper. https://zookeeper.apache.org. (2018).

[2] Hugo Barbosa, Fernando B. de Lima-Neto, Alexandre Evsukoff, and Ronaldo

Menezes. 2015. The effect of recency to human mobility. EPJ Data Science 4, 1
(2015), 1–14. arXiv:1504.01442

[3] James Blythe. 2012. A dual-process cognitive model for testing resilient control

systems. In 5th International Symposium on Resilient Control Systems. 8–12.
[4] James Blythe, Emilio Ferrara, Di Huang, Kristina Lerman, Goran Muric, Anna

Sapienza, Alexey Tregubov, Diogo Pacheco, John Bollenbacher, Alessandro Flam-

mini, Pik-Mai Hui, and Filippo Menczer. 2019. Massive Multi-Agent Data-Driven

Simulationsof the GitHub Ecosystem. In International Conference on Autonomous

Agents and Multiagent Systems PAAMS.
[5] James Blythe and Alexey Tregubov. 2018. FARM: Architecture for

DistributedAgent-based Social Simulations. In IJCAI/AAMAS Workshop on Mas-
sively Multi-Agent Systems.

[6] Peter G Fennell, Zhiya Zuo, and Kristina Lerman. 2018. Predicting and Ex-

plaining Behavioral Data with Structured Feature Space Decomposition. (2018).

arXiv:1810.09841

[7] Santo Fortunato, Alessandro Flammini, and Filippo Menczer. 2006. Scale-free

network growth by ranking. Physical Review Letters 96, 21 (2006), 218701.
[8] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1837

https://zookeeper.apache.org
http://arxiv.org/abs/1504.01442
http://arxiv.org/abs/1810.09841

	Abstract
	1 Introduction
	2 Challenge problem description
	3 Agent framework and domain implementation
	4 Agent models
	5 Candidate Agents and Results
	References

